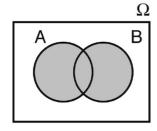
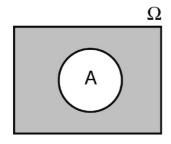

Verknüpfen von Ereignissen

Beispiel: Werfen eines Würfels

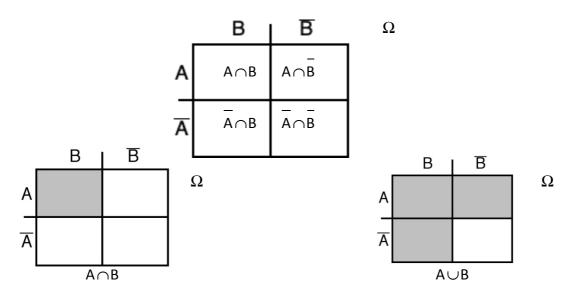
A: "Augenzahl gerade" $A = \{2, 4, 6\}$


B: "Augenzahl nicht 6" $B = \{1, 2, 3, 4, 5\}$

1. Schnittmenge $A \cap B$: $A \cap B = \{2,4\}$


Sprechweise: "A und B sind eingetreten"
"sowohl A als auch B sind eingetreten"

2. Vereinigungsmenge $A \cup B$: $A \cup B = \{1,2,3,4,5,6\}$


Sprechweise: "A oder B sind eingetreten"
"Mindestens eines der Ereignisse A, B ist eingetreten"

3. Komplementmenge $A : A = \{1,3,5\}$

Sprechweise: "nicht das Ereignis A ist eingetreten"

Veranschaulichung der Verknüpfungen mit Hilfe einer Vierfeldertafel:

Beispiele für Verknüpfungen von zwei Ereignissen

	Venn-Diagramm	Vierfeldertafel	Umgangssprache
$A \cap \overline{B}$	$\begin{array}{c} \Omega \\ \\ \\ \\ \\ \\ \end{array}$	B	A und nicht B treten ein
$\overline{A} \cap \overline{B}$ $= \overline{A \cup B}$ Gesetze	$\begin{array}{c} \Omega \\ \\ \end{array}$	B B Ω A A	Weder A noch B treten ein Keines der beiden Ereignisse tritt ein
von de Morgan $\overline{A} \cup \overline{B}$ $= \overline{A \cap B}$	$\begin{array}{c} \Omega \\ \\ \end{array}$	B	Nicht beide Ereignisse treten ein Höchstens eines der Ereignisse tritt ein
$(A \! \smallfrown \! \overline{B}) \\ \cup \\ (B \! \smallfrown \! \overline{A})$	$\begin{array}{c} \Omega \\ \\ \\ \\ \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Genau eines der Ereignisse tritt ein Entweder A oder B tritt ein

Anwendung auf das Eingangsbeispiel:

- 1. $A \cap B$: "Augenzahl ist gerade und 6" $A \cap B = \{6\}$
- 2. A \cap B:"Augenzahl ist nicht gerade und 6" A \cap B= \varnothing
- 3. $A \cup B$: "Augenzahl ist nicht gerade oder 6" $A \cup B = \{1,3,5,6\}$
- 4. $(A \cap B) \cup (B \cap A)$: "Augenzahl ist entweder gerade oder nicht 6" $(A \cap B) \cup (B \cap A) = \{1,3,5,6\}$

Wichtige Gesetzmäßigkeiten bei der Verknüpfung von Ereignissen

1. Kommutativgesetze:

$$A \cap B = B \cap A$$

$$A \cup B = B \cup A$$

2. Assoziativgesetze:

$$(A \cap B) \cap C = A \cap (B \cap C)$$

$$(A \cup B) \cup C = A \cup (B \cup C)$$

3. Distributivgesetze:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

4. Gesetze für das Komplement: $A \cap \overline{A} = \emptyset$

$$A \cup A = \Omega$$

5.

$$A \cap \emptyset = \emptyset$$
 $A \cup \emptyset = A$

 $A \cap \Omega = A$

$$\Omega = \Omega \cup A$$

Satz:

Zwei Ereignisse A und B heißen unvereinbar, wenn $A \cap B = \emptyset$ gilt.

Aufgabe:

Eine Urne enthält zwei rote und sechs weiße Kugeln. Es werden drei Kugeln ohne Zurücklegen gezogen.

Untersuchen Sie, ob die Ereignisse A: "es wird mindestens zweimal eine weiße Kugel gezogen" und B: "es wird höchstens zweimal eine weiße Kugel gezogen" unvereinbar sind.

$$\begin{split} &\Omega \!=\! \Big\{ rrw, rwr, rww, wrr, wrw, wwr, www \Big\} \\ &A \!=\! \Big\{ rww, wrw, wwr, www \Big\} \\ &A \!\cap\! B \!=\! \Big\{ rww, wrw, wwr \Big\} \neq \varnothing \\ &\Rightarrow A \text{ und } B \text{ sind nicht unvereinbar} \end{split}$$